Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.385
Filtrar
1.
J Hazard Mater ; 470: 134263, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613951

RESUMO

Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 µM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.


Assuntos
Antimônio , Antioxidantes , Regulação da Expressão Gênica de Plantas , Nanopartículas , Oryza , Selênio , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Antimônio/toxicidade , Antioxidantes/metabolismo , Selênio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento
2.
J Hazard Mater ; 470: 134245, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603910

RESUMO

This study delved into the physiological and molecular mechanisms underlying the mitigation of cadmium (Cd) stress in the model medicinal plant Salvia miltiorrhiza through the application of ZnO quantum dots (ZnO QDs, 3.84 nm). A pot experiment was conducted, wherein S. miltiorrhiza was subjected to Cd stress for six weeks with foliar application of 100 mg/L ZnO QDs. Physiological analyses demonstrated that compared to Cd stress alone, ZnO QDs improved biomass, reduced Cd accumulation, increased the content of photosynthetic pigments (chlorophyll and carotenoids), and enhanced the levels of essential nutrient elements (Ca, Mn, and Cu) under Cd stress. Furthermore, ZnO QDs significantly lowered Cd-induced reactive oxygen species (ROS) content, including H2O2, O2-, and MDA, while enhancing the activity of antioxidant enzymes (SOD, POD, APX, and GSH-PX). Additionally, ZnO QDs promoted the biosynthesis of primary and secondary metabolites, such as total protein, soluble sugars, terpenoids, and phenols, thereby mitigating Cd stress in S. miltiorrhiza. At the molecular level, ZnO QDs were found to activate the expression of stress signal transduction-related genes, subsequently regulating the expression of downstream target genes associated with metal transport, cell wall synthesis, and secondary metabolite synthesis via transcription factors. This activation mechanism contributed to enhancing Cd tolerance in S. miltiorrhiza. In summary, these findings shed light on the mechanisms underlying the mitigation of Cd stress by ZnO QDs, offering a potential nanomaterial-based strategy for enhancing Cd tolerance in medicinal plants.


Assuntos
Cádmio , Pontos Quânticos , Espécies Reativas de Oxigênio , Salvia miltiorrhiza , Óxido de Zinco , Pontos Quânticos/química , Óxido de Zinco/química , Óxido de Zinco/toxicidade , Salvia miltiorrhiza/efeitos dos fármacos , Salvia miltiorrhiza/metabolismo , Cádmio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
3.
J Hazard Mater ; 470: 134228, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626683

RESUMO

Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.


Assuntos
Arsênio , Cádmio , Regulação da Expressão Gênica de Plantas , Lolium , Reguladores de Crescimento de Plantas , Estresse Fisiológico , Cádmio/toxicidade , Lolium/efeitos dos fármacos , Lolium/metabolismo , Lolium/genética , Arsênio/toxicidade , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
4.
Sci Rep ; 14(1): 9367, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654118

RESUMO

This study is focused on analysing polyphenols and carbohydrates released by Phaeodactylum tricornutum (P. tricornutum) diatoms cultured in natural seawater enriched with sublethal and lethal Cu doses. Cu concentrations of 0.31, 0.79 and 1.57 µM reduced cell densities by 37, 82 and 91%, respectively, compared to the control. The total sum of all identified polyphenols and total carbohydrates released by cells grown under lethal Cu levels increased up to 18.8 and 107.4 times, respectively, compared to data from a control experiment. Four different in vitro assays were used to estimate the antioxidant activities of the extracellular compounds: 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition, cupric ion reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power and Cu complexing ability (CCA). The highest antioxidant activities were observed in the Cu lethal treatments, where the CCA assay exhibited a greater increase (up to 32.2 times higher than that found in the control experiment) to reduce the concentration of free Cu in the medium and its toxicity. The presence of Cu stimulated the release of polyphenols and carbohydrates to the medium as a detoxification mechanism to survive under lethal levels of Cu regulating its speciation.


Assuntos
Antioxidantes , Carboidratos , Cobre , Diatomáceas , Polifenóis , Diatomáceas/metabolismo , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Polifenóis/metabolismo , Cobre/metabolismo , Carboidratos/química , Antioxidantes/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos
5.
J Hazard Mater ; 470: 134172, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569340

RESUMO

Xyloglucan endotransglucosylase/hydrolases (XTH) are cell wall-modifying enzymes important in plant response to abiotic stress. However, the role of XTH in cadmium (Cd) tolerance in ramie remains largely unknown. Here, we identified and cloned BnXTH1, a member of the XTH family, in response to Cd stress in ramie. The BnXTH1 promoter (BnXTH1p) demonstrated that MeJA induces the response of BnXTH1p to Cd stress. Moreover, overexpressing BnXTH1 in Boehmeria nivea increased Cd tolerance by significantly increasing the Cd content in the cell wall and decreasing Cd inside ramie cells. Cadmium stress induced BnXTH1-expression and consequently increased xyloglucan endotransglucosylase (XET) activity, leading to high xyloglucan contents and increased hemicellulose contents in ramie. The elevated hemicellulose content increased Cd chelation onto the cell walls and reduced the level of intracellular Cd. Interestingly, overexpressing BnXTH1 significantly increased the content of Cd in vacuoles of ramie and vacuolar compartmentalization genes. Altogether, these results evidence that Cd stress induced MeJA accumulation in ramie, thus, activating BnXTH1 expression and increasing the content of xyloglucan to enhance the hemicellulose binding capacity and increase Cd chelation onto cell walls. BnXTH1 also enhances the vacuolar Cd compartmentalization and reduces the level of Cd entering the organelles and soluble solution.


Assuntos
Boehmeria , Cádmio , Parede Celular , Vacúolos , Cádmio/toxicidade , Cádmio/metabolismo , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Boehmeria/metabolismo , Boehmeria/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/efeitos dos fármacos , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Polissacarídeos/metabolismo , Oxilipinas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucanos/metabolismo , Xilanos/metabolismo , Estresse Fisiológico/efeitos dos fármacos
6.
Nature ; 626(8000): 874-880, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297121

RESUMO

Stress response pathways detect and alleviate adverse conditions to safeguard cell and tissue homeostasis, yet their prolonged activation induces apoptosis and disrupts organismal health1-3. How stress responses are turned off at the right time and place remains poorly understood. Here we report a ubiquitin-dependent mechanism that silences the cellular response to mitochondrial protein import stress. Crucial to this process is the silencing factor of the integrated stress response (SIFI), a large E3 ligase complex mutated in ataxia and in early-onset dementia that degrades both unimported mitochondrial precursors and stress response components. By recognizing bifunctional substrate motifs that equally encode protein localization and stability, the SIFI complex turns off a general stress response after a specific stress event has been resolved. Pharmacological stress response silencing sustains cell survival even if stress resolution failed, which underscores the importance of signal termination and provides a roadmap for treating neurodegenerative diseases caused by mitochondrial import defects.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Mutação , Doenças Neurodegenerativas , Estresse Fisiológico , Ubiquitina-Proteína Ligases , Apoptose/efeitos dos fármacos , Ataxia/genética , Sobrevivência Celular/efeitos dos fármacos , Demência/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
7.
Cells ; 12(10)2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37408231

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) plays an important role in plant growth and development, and in the response to various abiotic stresses. However, its role in the responses of barley to low phosphorus (LP) stress remains largely unknown. In the present study, we investigated the root phenotypes and metabolic patterns of LP-tolerant (GN121) and LP-sensitive (GN42) barley genotypes under normal P, LP, and LP with exogenous melatonin (30 µM) conditions. We found that melatonin improved barley tolerance to LP mainly by increasing root length. Untargeted metabolomic analysis showed that metabolites such as carboxylic acids and derivatives, fatty acyls, organooxygen compounds, benzene and substituted derivatives were involved in the LP stress response of barley roots, while melatonin mainly regulated indoles and derivatives, organooxygen compounds, and glycerophospholipids to alleviate LP stress. Interestingly, exogenous melatonin showed different metabolic patterns in different genotypes of barley in response to LP stress. In GN42, exogenous melatonin mainly promotes hormone-mediated root growth and increases antioxidant capacity to cope with LP damage, while in GN121, it mainly promotes the P remobilization to supplement phosphate in roots. Our study revealed the protective mechanisms of exogenous MT in alleviating LP stress of different genotypes of barley, which can be used in the production of phosphorus-deficient crops.


Assuntos
Hordeum , Melatonina , Fósforo , Raízes de Plantas , Estresse Fisiológico , Melatonina/farmacologia , Melatonina/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Fósforo/deficiência , Hordeum/efeitos dos fármacos , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Genótipo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
8.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(7): 610-616, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37403720

RESUMO

Objective To investigate the effects of formononetin (FMN) on cognitive behavior and inflammation in aging rats with chronic unpredictable mild stress (CUMS). Methods SD rats aged about 70 weeks were divided into healthy control group, CUMS model group, CUMS combined with 10 mg/kg FMN group, CUMS combined with 20 mg/kg FMN group and CUMS combined with 1.8 mg/kg fluoxetine hydrochloride (Flu) group. Except for healthy control group, other groups were stimulated with CUMS and administered drugs for 28 days. Sugar water preference, forced swimming experiment and open field experiment were used to observe the emotional behavior of rats in each group. HE staining was used to observe the pathological injury degree of brain equine area. The contents of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were detected by the kit. The apoptosis was tested by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) in the brain tissue. The levels of tumor necrosis factor α (TNF-α), inducible nitric oxide synthase (iNOS) and interleukin 6 (IL-6) in peripheral blood were measured by ELISA. Western blot analysis was used to detect Bcl2, Bcl2 associated X protein (BAX), cleaved caspase-9, cleaved caspase-3, Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and phosphorylated nuclear factor κB p65 (p-NF-κB p65) in brain tissues. Results Compared with CUMS model group, sugar water consumption, open field activity time, open field travel distance and swimming activity time significantly increased in the CUMS combined with 20 mg/kg FMN group and the CUMS combined with 1.8 mg/kg Flu group. The number of new outarm entry increased significantly, while the number of initial arm entry and other arm entry decreased significantly. The pathological damage of brain equine area was alleviated, and the contents of 5-HT and 5-HIAA were significantly increased. The ratio of BAX/Bcl2 and the expression of cleaved caspase-9 and cleaved caspase-3 protein as well as the number of apoptotic cells were significantly decreased. The contents of TNF-α, iNOS and IL-6 were significantly decreased. The protein levels of TLR4, MyD88 and p-NF-κB p65 were significantly decreased. Conclusion FMN can inhibit the release of inflammatory factors by blocking NF-κB pathway and improve cognitive and behavioral ability of CUMS aged rats.


Assuntos
Comportamento Animal , Hipocampo , Isoflavonas , NF-kappa B , Transdução de Sinais , Estresse Fisiológico , Animais , Ratos , Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Isoflavonas/farmacologia , Envelhecimento , Comportamento Animal/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Anti-Inflamatórios/farmacologia
9.
Mol Omics ; 19(7): 585-597, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37345535

RESUMO

Photochemical internalization (PCI) is a promising new technology for site-specific drug delivery, developed from photodynamic therapy (PDT). In PCI, light-induced activation of a photosensitizer trapped inside endosomes together with e.g. chemotherapeutics, nucleic acids or immunotoxins, allows cytosolic delivery and enhanced local therapeutic effect. Here we have evaluated the photosensitizer meso-tetraphenyl chlorine disulphonate (TPCS2a/fimaporfin) in a proteome analysis of AY-27 rat bladder cancer cells in combination with the chemotherapeutic drug bleomycin (BML). We find that BLMPCI attenuates oxidative stress responses induced by BLM alone, while concomitantly increasing transcriptional repression and DNA damage responses. BLMPCI also mediates downregulation of bleomycin hydrolase (Blmh), which is responsible for cellular degradation of BLM, as well as several factors known to be involved in fibrotic responses. PCI-mediated delivery might thus allow reduced dosage of BLM and alleviate unwanted side effects from treatment, including pulmonary fibrosis.


Assuntos
Bleomicina , Fotoquímica , Proteômica , Neoplasias da Bexiga Urinária , Bleomicina/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Proteínas Supressoras de Tumor/metabolismo , Regulação para Baixo/efeitos dos fármacos , Animais , Ratos , Linhagem Celular Tumoral , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
10.
Microbiol Immunol ; 67(2): 49-57, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36398783

RESUMO

The pathogenic fungus Trichosporon asahii causes fatal deep-seated mycosis in immunocompromised patients. Calcineurin, which is widely conserved in eukaryotes, regulates cell growth and various stress responses in fungi. Tacrolimus (FK506), a calcineurin inhibitor, induces sensitivity to compounds that cause stress on the cell membrane and cell wall integrity. In this study, we demonstrated that FK506 affects stress responses and hyphal formation in T. asahii. In silico structural analysis revealed that amino acid residues in the binding site of the calcineurin-FKBP12 complex that interact with FK506 are conserved in T. asahii. The growth of T. asahii was delayed by FK506 in the presence of SDS or Congo red but not in the presence of calcium chloride. FK506 also inhibited hyphal formation in T. asahii. A mutant deficient of the cnb gene, which encodes the regulatory subunit B of calcineurin, exhibited stress sensitivities on exposure to SDS and Congo red and reduced the hyphal forming ability of T. asahii. In the cnb-deficient mutant, FK506 did not increase the stress sensitivity or reduce hyphal forming ability. These results suggest that FK506 affects stress responses and hyphal formation in T. asahii via the calcineurin signaling pathway.


Assuntos
Calcineurina , Tacrolimo , Tricosporonose , Humanos , Calcineurina/metabolismo , Vermelho Congo , Transdução de Sinais , Tacrolimo/farmacologia , Tacrolimo/metabolismo , Tricosporonose/tratamento farmacológico , Tricosporonose/virologia , Hifas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Inibidores de Calcineurina/farmacologia , Inibidores de Calcineurina/uso terapêutico
11.
Proc Natl Acad Sci U S A ; 119(32): e2208317119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914137

RESUMO

The proper balance of synthesis, folding, modification, and degradation of proteins, also known as protein homeostasis, is vital to cellular health and function. The unfolded protein response (UPR) is activated when the mechanisms maintaining protein homeostasis in the endoplasmic reticulum become overwhelmed. However, prolonged or strong UPR responses can result in elevated inflammation and cellular damage. Previously, we discovered that the enzyme filamentation induced by cyclic-AMP (Fic) can modulate the UPR response via posttranslational modification of binding immunoglobulin protein (BiP) by AMPylation during homeostasis and deAMPylation during stress. Loss of fic in Drosophila leads to vision defects and altered UPR activation in the fly eye. To investigate the importance of Fic-mediated AMPylation in a mammalian system, we generated a conditional null allele of Fic in mice and characterized the effect of Fic loss on the exocrine pancreas. Compared to controls, Fic-/- mice exhibit elevated serum markers for pancreatic dysfunction and display enhanced UPR signaling in the exocrine pancreas in response to physiological and pharmacological stress. In addition, both fic-/- flies and Fic-/- mice show reduced capacity to recover from damage by stress that triggers the UPR. These findings show that Fic-mediated AMPylation acts as a molecular rheostat that is required to temper the UPR response in the mammalian pancreas during physiological stress. Based on these findings, we propose that repeated physiological stress in differentiated tissues requires this rheostat for tissue resilience and continued function over the lifetime of an animal.


Assuntos
AMP Cíclico , Proteínas de Drosophila , Drosophila melanogaster , Estresse do Retículo Endoplasmático , Nucleotidiltransferases , Estresse Fisiológico , Resposta a Proteínas não Dobradas , Animais , Camundongos , Alelos , AMP Cíclico/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Nucleotidiltransferases/deficiência , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/enzimologia , Pâncreas/metabolismo , Pâncreas/fisiopatologia , Estresse Fisiológico/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
12.
Biomed Pharmacother ; 148: 112778, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35272135

RESUMO

Stress is a condition affecting different body systems. Curcumin (CUR) is a natural compound that has various pharmacological benefits. However, its poor oral bioavailability limits its therapeutic value. This study aimed to formulating curcumin loaded chitosan nanoparticles (CS.CUR.NPs) and investigate its gastroprotective and neuroprotective effects in rats subjected to cold restraint stress (CRS), in reference to conventional oral CUR preparation, and explore its underlying mechanism. Treated groups received either CUR or CS.CUR.NPs (100 mg∕kg) orally for 14 days before exposure to CRS. CRS elicited marked behavioral changes and gastric ulcer accompanied by histopathological abnormalities of the brain and stomach along with elevation of pain score. CUR and CS.CUR.NPs improved stress-induced gastric ulcer, cognitive performance, and pain sensation. Mechanistically, CRS disrupts oxidative and inflammatory status of the brain as manifested by high malondialdehyde and IL-6 and low total antioxidant capacity and IL-10, along with high C-reactive protein level. CRS decreased nuclear factor erythroid 2-related factor2 (Nrf2) and increased nuclear factor-kappa B (NF-κB) expressions. Furthermore, brain levels of unphosphorylated signal transducer and activator of transcription3 (U-STAT3) and glial fibrillary acidic protein (GFAP) were upregulated with stress. CUR and CS.CUR.NPs provided beneficial effects against harmful consequences resulting from stress with superior beneficial effects reported with CS.CUR.NPs. In conclusion, these findings shed light on the neuroprotective effect of CUR and CS.CUR.NPs against stress-induced neurobehavioral and neurochemical deficits and protection against stress-associated gastric ulcer. Moreover, we explored a potential crosslink between neuroinflammation, U-STAT3, NF-κB, and GFAP in brain dysfunction resulted from CRS.


Assuntos
Curcumina/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/química , Fármacos Neuroprotetores/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Quitosana/química , Disfunção Cognitiva/patologia , Temperatura Baixa , Proteína Glial Fibrilar Ácida/efeitos dos fármacos , Inflamação/patologia , Oxirredução/efeitos dos fármacos , Dor/patologia , Ratos , Fator de Transcrição STAT3/efeitos dos fármacos , Estômago/efeitos dos fármacos , Úlcera Gástrica/patologia
13.
Ecotoxicol Environ Saf ; 233: 113336, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35228027

RESUMO

Contamination of freshwaters is increasing globally, with microalgae considered one of the most sensitive taxa to metal pollution. Here, we used 72 h bioassays to explore the biochemical effects of copper (Cu) on the amino acid (AA) profile and proteome of Chlorella sp. and advance our understanding of the molecular changes that occur in algal cells during exposure to environmentally realistic Cu concentrations. The Cu concentrations required to inhibit algal growth rate by 10% (EC10) and 50% (EC50) were 1.0 (0.7-1.2) µg L-1 and 2.0 (1.9-2.4) µg L-1, respectively. The AA profile of Chlorella sp. showed increases in glycine and decreases in isoleucine, leucine, valine, and arginine, with increasing Cu. Proteomic analysis revealed the modulation of several proteins involved in energy production pathways, including: photosynthesis, carbon fixation, glycolysis, and oxidative phosphorylation, which likely assists in meeting increased energy demands under Cu-stressed conditions. Copper exposure also caused up-regulation of cellular processes and signalling proteins, and the down-regulation of proteins related to ribosomal structure and protein translation. These changes in biomolecular pathways have direct effects on the AA profile and total protein content and provide an explanation for the observed changes in amino acid profile, cell growth and morphology. This study shows the complex mode of action of Cu on Chlorella under environmentally realistic Cu concentrations and highlights several potential biomarkers for future investigations.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água , Aminoácidos/metabolismo , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Cobre/análise , Água Doce , Microalgas/metabolismo , Proteoma/metabolismo , Proteômica , Estresse Fisiológico/efeitos dos fármacos , Poluentes Químicos da Água/análise
14.
BMC Plant Biol ; 22(1): 98, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247968

RESUMO

BACKGROUND: Hydrogen sulfide (H2S) has been proposed to exert anti-oxidative effect under many environmental stresses; however, how it influences oxidative stress remains largely unclear. RESULTS: Here, we assessed the effects of H2S on oxidative stress responses such as salicylic acid (SA)-dependent cell death, which triggered by increased H2O2 availability in Arabidopsis thaliana catalase-deficient mutants cat2 displaying around 20% wild-type catalase activity. H2S generation and its producing enzyme L-cysteine desulfhydrase (LCD/DES) were found to transient increase in response to intracellular oxidative stress. Although introducing the mutation of des1, an important LCD, into the cat2 background produced little effect, H2S fumigation not only rescued the cell death phenotype of cat2 plant, but also attenuated SA accumulation and oxidation of the glutathione pool. Unexpectedly, the activities of major components of ascorbate-glutathione pathway were less affected by the presence of H2S treatment, but decreased glycolate oxidase (GOX) in combination with accumulation of glycolate implied H2S treatment impacts the cellular redox homeostasis by repressing the GOX-catalyzed reaction likely via altering the major GOX transcript levels. CONCLUSIONS: Our findings reveal a link between H2S and peroxisomal H2O2 production that has implications for the understanding of the multifaceted roles of H2S in the regulation of oxidative stress responses.


Assuntos
Oxirredutases do Álcool/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Sulfeto de Hidrogênio/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Oxirredutases do Álcool/genética , Variação Genética , Genótipo , Mutação , Estresse Oxidativo/genética , Estresse Fisiológico/genética
15.
Cell ; 185(3): 513-529.e21, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120663

RESUMO

The human gut microbiota resides within a diverse chemical environment challenging our ability to understand the forces shaping this ecosystem. Here, we reveal that fitness of the Bacteroidales, the dominant order of bacteria in the human gut, is an emergent property of glycans and one specific metabolite, butyrate. Distinct sugars serve as strain-variable fitness switches activating context-dependent inhibitory functions of butyrate. Differential fitness effects of butyrate within the Bacteroides are mediated by species-level variation in Acyl-CoA thioesterase activity and nucleotide polymorphisms regulating an Acyl-CoA transferase. Using in vivo multi-omic profiles, we demonstrate Bacteroides fitness in the human gut is associated together, but not independently, with Acyl-CoA transferase expression and butyrate. Our data reveal that each strain of the Bacteroides exists within a unique fitness landscape based on the interaction of chemical components unpredictable by the effect of each part alone mediated by flexibility in the core genome.


Assuntos
Microbioma Gastrointestinal , Metaboloma , Polissacarídeos/metabolismo , Acil Coenzima A/metabolismo , Sequência de Aminoácidos , Aminoácidos de Cadeia Ramificada/metabolismo , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/genética , Bacteroidetes/crescimento & desenvolvimento , Butiratos/química , Butiratos/farmacologia , Coenzima A-Transferases/química , Coenzima A-Transferases/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Variação Genética/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Metaboloma/efeitos dos fármacos , Metaboloma/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Especificidade da Espécie , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcrição Gênica/efeitos dos fármacos
16.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163269

RESUMO

A growing body of evidence indicates that dietary polyphenols show protective effects against various cancers. However, little is known yet about their activity in brain tumors. Here we investigated the interaction of dietary flavonoid quercetin (QCT) with the human glioblastoma A172 and LBC3 cell lines. We demonstrated that QCT evoked cytotoxic effect in both tested cell lines. Microscopic observations, Annexin V-FITC/PI staining, and elevated expression and activity of caspase 3/7 showed that QCT caused predominantly apoptotic death of A172 cells. Further analyses confirmed enhanced ROS generation, deregulated expression of SOD1 and SOD2, depletion of ATP levels, and an overexpression of CHOP, suggesting the activation of oxidative stress and ER stress upon QCT exposure. Finally, elevated expression and activity of caspase 9, indicative of a mitochondrial pathway of apoptosis, was detected. Conversely, in LBC3 cells the pro-apoptotic effect was observed only after 24 h incubation with QCT, and a shift towards necrotic cell death was observed after 48 h of treatment. Altogether, our data indicate that exposure to QCT evoked cell death via activation of intrinsic pathway of apoptosis in A172 cells. These findings suggest that QCT is worth further investigation as a potential pharmacological agent in therapy of brain tumors.


Assuntos
Glioblastoma/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Caspases/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Flavonoides/farmacologia , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/metabolismo , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Dados Preliminares , Quercetina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
17.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163324

RESUMO

Copper (Cu) is an essential micronutrient required as a co-factor in the catalytic center of many enzymes. However, excess Cu can generate pleiotropic effects in the microbial cell. In addition, leaching of Cu from pipelines results in elevated Cu concentration in the environment, which is of public health concern. Sulfate-reducing bacteria (SRB) have been demonstrated to grow in toxic levels of Cu. However, reports on Cu toxicity towards SRB have primarily focused on the degree of toxicity and subsequent elimination. Here, Cu(II) stress-related effects on a model SRB, Desulfovibrio alaskensis G20, is reported. Cu(II) stress effects were assessed as alterations in the transcriptome through RNA-Seq at varying Cu(II) concentrations (5 µM and 15 µM). In the pairwise comparison of control vs. 5 µM Cu(II), 61.43% of genes were downregulated, and 38.57% were upregulated. In control vs. 15 µM Cu(II), 49.51% of genes were downregulated, and 50.5% were upregulated. The results indicated that the expression of inorganic ion transporters and translation machinery was massively modulated. Moreover, changes in the expression of critical biological processes such as DNA transcription and signal transduction were observed at high Cu(II) concentrations. These results will help us better understand the Cu(II) stress-response mechanism and provide avenues for future research.


Assuntos
Cobre/farmacologia , Desulfovibrio/efeitos dos fármacos , Desulfovibrio/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Sulfatos/farmacologia , Transcriptoma/efeitos dos fármacos , Proteínas de Bactérias/genética , Fenômenos Biológicos/genética , Transcriptoma/genética
18.
Life Sci ; 296: 120424, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196531

RESUMO

AIMS: Hypertension is one of the major causes of cardiac damage. In this study, the effects of resveratrol supplementation and regular exercise on hypertension-induced cellular stress responses of myocardium were compared. MAIN METHODS: Hypertension was induced in male Wistar rats by deoxycorticosterone-acetate + salt administration for 12 weeks. Resveratrol and regular exercise were applied for the last six weeks. In addition to biochemical and molecular examinations, isoprenaline, phenylephrine and, acetylcholine-mediated contractions and sinus rate were recorded in the isolated cardiac tissues. KEY FINDINGS: Resveratrol and regular exercise reduced systolic blood pressure in hypertensive rats. The altered adrenergic and cholinergic responses of the right atrium and left papillary muscles in hypertension were separately improved by resveratrol and regular exercise. Resveratrol and regular exercise decreased plasma and cardiac total antioxidant capacity and, augmented the expression of antioxidant genes in hypertensive rats. While regular exercise restored the increase in p-PERK expression associated with endoplasmic reticulum stress and decrease in mitophagic marker PINK1 expression, resveratrol only ameliorated PINK1 expression in hypertensive rats. Resveratrol and exercise training suppressed hypertension-induced NLRP3 inflammasome activation by reversing the increase in NLRP3, p-NF-κB expression and the mature-IL-1ß/pro-IL-1ß and cleaved-caspase-1/pro-caspase-1 ratio. Resveratrol and exercise enhanced mRNA expression of caspase-3, bax, and bcl-2 involved in the apoptotic pathway, but attenuated phosphorylation of stress-related mitogenic proteins p38 and JNK induced by hypertension. SIGNIFICANCE: Our study demonstrated the protective effect of resveratrol and exercise on hypertension-induced cardiac dysfunction by modulating cellular stress responses including oxidative stress, ER stress, mitophagy, NLRP3 inflammasome-mediated inflammation, and mitogenic activation.


Assuntos
Coração/fisiopatologia , Hipertensão/fisiopatologia , Resveratrol/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Animais , Acetato de Desoxicorticosterona/toxicidade , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Hipertensão/induzido quimicamente , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Masculino , Mitofagia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Condicionamento Físico Animal , Proteínas/genética , Proteínas/metabolismo , Ratos Wistar , Estresse Fisiológico/fisiologia
19.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163656

RESUMO

Cadmium (Cd) pollution in cultivated land is caused by irresistible geological factors and human activities; intense diffusion and migration have seriously affected the safety of food crops. Plants have evolved mechanisms to control excessive influx of Cd in the environment, such as directional transport, chelation and detoxification. This is done by some specific metalloproteins, whose key amino acid motifs have been investigated by scientists one by one. The application of powerful cell biology, crystal structure science, and molecular probe targeted labeling technology has identified a series of protein families involved in the influx, transport and detoxification of the heavy metal Cd. This review summarizes them as influx proteins (NRAMP, ZIP), chelating proteins (MT, PDF), vacuolar proteins (CAX, ABCC, MTP), long-distance transport proteins (OPT, HMA) and efflux proteins (PCR, ABCG). We selected representative proteins from each family, and compared their amino acid sequence, motif structure, subcellular location, tissue specific distribution and other characteristics of differences and common points, so as to summarize the key residues of the Cd binding target. Then, we explain its special mechanism of action from the molecular structure. In conclusion, this review is expected to provide a reference for the exploration of key amino acid targets of Cd, and lay a foundation for the intelligent design and breeding of crops with high/low Cd accumulation.


Assuntos
Aminoácidos/metabolismo , Cádmio/toxicidade , Metaloproteínas/metabolismo , Plantas/metabolismo , Estresse Fisiológico , Inativação Metabólica/efeitos dos fármacos , Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
20.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163676

RESUMO

RcNAC72, a key transcription factor that may respond to drought stress in Rosa chinensis 'Old Blush', was selected in our previous study. In the present study, we found that RcNAC72 is localized in the nucleus and is a transcriptional activator. RcNAC72 expression could be significantly induced by drought, low temperature, salt as well as abscisic acid (ABA) treatment. Analysis of the promoter revealed that multiple abiotic stress and hormone response elements were located in the promoter region. The promoter could respond to drought, low temperature, salt and ABA treatments to activate GUS gene expression. Overexpressing RcNAC72 in Arabidopsis thaliana enhanced sensitivity to ABA and tolerance to drought stress. Silencing of RcNAC72 by virus-induced gene silencing (VIGS) in rose leaves significantly reduced leaf water loss tolerance and leaf extension capacity. Physical interaction of RcNAC72 with RcDREB2A was shown by means of the yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. RcABF4 was demonstrated to be able to bind to the promoter of RcNAC72 by means of the yeast one-hybrid (Y1H) assay. These results provide new insights into the regulatory network of RcNAC72 response to drought stress in roses.


Assuntos
Adaptação Fisiológica , Arabidopsis/fisiologia , Secas , Proteínas de Plantas/metabolismo , Rosa/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica , Modelos Biológicos , Fenótipo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...